CO₂ Utilization in Unconventional Reservoirs

Project Number 67897 Task 1

H. Todd Schaef B. Pete McGrail

Pacific Northwest National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface through Technology Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂
- <u>Project benefits statement</u>: This research project conducts modeling and laboratory studies to lower cost and to advance understanding of storing pure CO₂ and mixed gas emissions produced from post- and oxycombustion flue gas in unconventional geologic reservoirs.

Project Overview: Goals and Objectives

- Goal: Development of geologic storage technology with a near zero cost penalty goal – a grand challenge with enormous economic benefits.
- Objective: Employ a multidisciplinary approach for identifying key sequestration opportunities and for pursuing major research needs in:
 - Identifying R&D needs and pursuing R&D on promising low-cost technologies for utilizing CO₂ and CO₂ containing other constituents in depleted shale gas and shale oil reservoirs.
 - phase behavior and fate and transport of supercritical gas mixtures in fractured geologic formations.
 - casing material studies with water and mixed gas systems
 - development of acoustically responsive contrast agents for enhanced monitoring of injected CO₂.

Project Overview: Scope of work

- Task 1 Utilization in Unconventional Reservoirs
 - 1.1 Storage in Depleted Shale Gas Reservoirs
 - Geochemical Aspects of Wet scCO₂ Fluids
 - $_{\circ}$ Supercritical CO₂ fluids and Clay Interactions
 - Structural changes to Na montmorillonites exposed to variable hydrated scCO₂ fluids
 - Cation/CO₂ interactions obtained from cation specific clays
 - MD simulations on CH₄/CO₂ sorption
 - Competitive CH₄/CO₂ Sorption
 - Near infrared spectroscopy technique development
 - Reservoir Modeling
 - ✤ Field scale simulation utilizing CO₂ in a depleted fractured shale reservoir utilizing CO₂
 - ✤ Incorporate laboratory findings to optimize methane production
 - 1.2 Enhanced Monitoring Agents
 - Impedance tube measurements with sand/nanoparticle composites performance testing in a laboratory setting
 - Low-Frequency Seismic/Elastic Property Measurement System
 - Impose known stresses on a sample and measure the resulting strain
 - Results from Berea sandstone

Geochemical Aspects of Wet scCO₂ Fluids

Early laboratory studies at PNNL demonstrate unusual behavior between water bearing $scCO_2$ fluids and clays. Key questions emerged:

- How significant are volume changes associated with swelling clays in the presences of CO₂?
- How do we predict conditions for fluid transmission through fractures (opening/self sealing)?
- What controls gas sorption processes and what role does water play in the presence of scCO₂.

Interactions of Na Montmorillonites with Variable Hydrated scCO₂ Fluids

Pressurized *flow-through* XRD-FTIR capability collected from the Na-SWy-2 clay during exposure to variable amounts of dissolved water in CH_4 gas containing 3% CO_2 (left) and pure CO_2 (right).

- Transmission Pressurized IR and XRD Cell
- IR technique provides dissolved H₂O concentrations in supercritical fluids (HOH bending mode of dissolved water)
- XRD tracks structural changes of the clays (d001 basal reflection)
- Stacked XRD patterns illustrate structural changes occurring to the clays as a function of % water saturation

Interactions of Na Montmorillonites with Variable Hydrated scCO₂ Fluids

- IR and XRD Experiments with Na-SWy-2 (90 bar and 50°C)
- During exposure to anhydrous CO₂ clay structure remains stable
- IR shows a dramatic increase in absorbance with expansion from 0W to 1W after the addition of a small amount of water
- Decreased CO₂ concentrations with increasing water
- Pressurized XRD coupled to IR provides a unique insight into structural changes in a mixed gas system (i.e. CO₂, CH₄)

Na-SWy-2 Exposed to 100% CO₂

Cation and CO₂ interactions: What is happening in the clay interlayer?

ATR-IR spectra of CO_2 sorbed to Na-SWy-2, Cs-SWy-2 and NH₄-SWy-2 in the asymmetric CO stretching regions of CO_2 .

- IR bands of CO₂ are at different positions for Cs⁺ and NH₄⁺
- Cs⁺ and NH₄⁺ cations are solvated by CO₂
- No shift in the Na-SWy-2

High Pressure ¹³C MAS-NMR of CO₂ sorbed to Na-SWy-2, Cs-SWy-2 and NH_4 -SWy-2

- Shoulder absent in spectra for pure scCO₂ and scCO₂ exposed to Na-SWy-2
- Shoulder in spectra for Cs⁺ and NH₄⁺ indicate a different chemical environment

Through *in situ* measurements, atomistic models of $scCO_2$ and interlayer cation interactions are benchmarked and become key to developing molecular simulations of more complex systems.

In Situ NIRS Capability for Competitive CH₄/CO₂ Sorption Studies on Shales

Near-infrared spectroscopic (NIRS) capability for studying CH_4 and CO_2 sorption onto organic-rich shales.

- Each gas has unique spectral features, ideal for measuring competitive gas adsorption
- CH₄, integrated absorbance bands from 6721-7671 cm⁻¹ and 8244-9037 cm⁻¹
- CO₂, integrated absorbance bands from 4,800 to 5200 cm⁻¹

Modeling CO₂ Sorption on Clays for Reservoir Simulators

- STOMP-EOR simulates multiphase, multicomponent flow and transport of CO₂, methane and oil components coupled with geochemical reactions
- Simulations are used to investigate methane release via competitive CO₂ adsorption

MD simulations describe adsorption as initially driven by CO_2 film formation on the surface, but interactions in bulk CO_2 become more energetically favorable at higher pressures.

Equilibrium constant, K_{eq} , as a function of the density of supercritical phase CO_2 (scCo₂):

$$K_{eq} = \frac{C * \rho_{crit}}{|\rho_{crit} - \rho_{scCO2}|}$$

Where a "critical" CO_2 density -the gaseous density beyond which CO_2 will begin desorbing- as well as an empirically fitted (clay-type specific) constant, *C*.

Bacon, D.H., Ruprecht, C.M., Schaef, H.T., White, M.D., McGrail, B.P., 2015. "CO₂ Storage by Adsorption on Organic Matter and Clay in Gas Shale", Journal of Unconventional Oil and Gas Resources, V12, pages 123-133

Acoustically Responsive Contrast Agents for Enhanced Monitoring of Injected CO₂

OH

- Introduction of flexible ligands in MOF structure allows for tuning of librational absorption modes that are detectible through conventional seismic imaging.
- Dispersion in scCO₂ to form a nanofluid provides for injectable acoustic contrast agent

Impedance Tube Measurements with Sand/Nanoparticle Composites

Sand-nanoparticle composites exhibit striking transmission loss shifts when compared to sandwater composites in the low frequency band (100 Hz to 500 Hz)

Low-Frequency Seismic/Elastic Property Measurement System

Laboratory technique developed to measure seismic attenuation and velocity on rock core at relevant frequencies (0-100 Hz) under high confining pressure.

- Impose known stress on sample and measure resulting strain (forced oscillation method)
- Both velocity and attenuation are key components in the wave propagation
- Phase shift between stress and strain provides information on attenuation
- Amplitude ratio provides velocity information (Young's Modulus)

Evidence of Seismic Properties Being Altered in Berea Sand Stone Containing Injected MOFs

Mechanical property (Young's modulus) of Berea SS:

- Dry core: near constant value of ~12 GPa (similar to Tisato & Quintal 2013)
- Water saturated core: ~6-8 GPa with an observable increases at higher frequencies
- MOF fluid: large decrease compared to air and water (2 GPa)

Seismic attenuation in Berea SS:

- Dry core: near linear response up to 60 Hz (~0.13 radians)
- Water saturated core: slightly higher response (0.8-0.22 radians)
- MOF Fluid: increased attenuation above 50 Hz compared to air and water

Accomplishments to Date

- Completed a series of experiments relating volume changes to swelling clays in variable hydrated supercritical mixed gas fluids.
- Key in situ measurements identified CO₂-cation interactions in model clay minerals that can be used to bench mark molecular models
- Initiated a new NIR technique to characterize competitive CH₄/CO₂ processes occurring on model clay systems and natural shales
- Incorporating results from fundamental studies on CO₂ adsorption in shales into reservoir simulators to model at the field scale CH₄ production enhanced by injecting CO₂
- Developing advanced monitoring techniques that utilize an injectable nanomaterial to track CO₂ migration geologic reservoirs.

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

	1	Detailed Schedule FY 2015-FY 2016													
				July	Aug	Sept	Oct	Nov				March	April	May	June
	Task Name									-		unneren			
#	Project Management	Start	Finish									-			
1	Manage Project	Jul-15	Jun-16				1	-	-		-	-			-
2	FY15 Q4 Report	Jul-15	Sep-15				-			1	-			-	-
	FY16 Q1 Report	Oct-15	Dec-15				-				-				
	•									†		-			
4	FY16 Q2 Report	Jan-16	Mar-16									•	-		
5	FY16 Q3 Report	Mar-16	Jun-16												
			Milestone				1	-		1		-		1	-
		stone Description	Date												
6	Develop a high-pressure, in situ spectroscopic capability for quantifying sorption of methane onto organic-rich shales. Experiments will be conducted to measure methane retention on natural shales at representative reservoir conditions. This work will include a series of experiments where pure kerogen is exposed to scCO2 at relevant reservoir conditions to obtain partition coefficients.		Sep-15	-		-•									
7	Conduct a series of pressurized FTIR titrations coupled to in situ XRD experiments using cation saturated montmonilonities and natural shale gas core samples to establish mineral structural changes and gas sorption behaviors occurring in CH4/CO2 mixtures as a function of dissolved water content. Experimental results will be used in computational geochemistry studies to obtain mechanistic processes dominating CH4/CO2 exchange under realistic reservoir conditions. The final outcomes will be contributions to the development of optimum injection strategies and idealized in situ conditions for maximizing CH4/CO2 exchange rates in idealized in situ conditions for maximizing CH4/CO2 exchange rates in idealized in situ conditions.		Sep-15												
8	Complete isotopic measurement sidewall cores collected from those carbonates known to or	ents on carbonate material removed from the Basalt Pilot Well and compare results to ccur naturally within the basalt flows. The	Dec-15						•						
Ŭ	outcome will be documented reported in the quarterly report. Conduct a series of pressurized Atomic Forced Microscopy (AFM) experiments that capture carbonation of a pure mineral phase in the presence of scCQ2 and water. These measurements have the potential of providing diagnostic information on carbonate nucleation, meta-stable intermediate transitional phases, and crystal growth rates in occurring in a wit scCQ2 fluid.		Dec-15						•	•					
10	Complete acoustic velocity measurements for CO2 based nanofluids systems using pressurized low-frequency dynamic geomechanical techniques. Results of these experiments will help define materials suitable for additional testing.		Mar-16									•			
11	Summarize finings associated with the Wallula Basalt Pilot well into a manuscript for submission to a high impact peer reviewed journal. These finds will include comparisons between down hole logging surveys measuring pore fluid saturation, thermal impacts of the injected CO2 on formation temperature, and comparison 13C and 18O values between the injected fluid, groundwater samples, well cuttings, and those carbonate nodules identified in side wall cores and natural occurring carbonates.		Mar-16									-			
12	Conduct a series of in situ FTIR and XR0 experiments to characterize thin water film development and carbonation of important basalt mineral silicates (i.e. pyroxene, fayailte, and microcline etc.). Data generated from these experiments will complement our data set on forsterite and plagioclase minerals. We will utilize computation geochemistry to identify key reaction mechanisms that 1) drive water film development and 2) control carbonation. Outcomes from this study will be incorporated into reservoir models to obtain better prediction of CO2 storage in basalt formations.		Jun-16												
13	Conduct pre-closure geochem wireline geophysical logs and characterization/analysis of th compilation of groundwater ch in quarterly reports.	Jun-16													
Sec	ject: Capture and questration Support rvices	Task Quartly Report	•		Miles	tone			Ph	nase =					

- Bacon, D.H., Ruprecht, C.M., Schaef, H.T., White, M.D., McGrail, B.P., (2015). "CO₂ Storage by Adsorption on Organic Matter and Clay in Gas Shale", <u>Journal of</u> <u>Unconventional Oil and Gas Resources</u>, V12, pages 123-133.
- Schaef, HT, JS Loring, V-A Glezakou, et al., (2015). Competitive Sorption of CO₂ and H₂O in 2:1 Layer Phyllosilicates, <u>GCA</u>, Vol 161, pages 248-257.
- Davidson, CL, and BP McGrail, (**2015**). "Economic assessment of revenues associated with enhanced recovery and CO₂ storage in gas-bearing shales", <u>IJGGC</u>.
- Lee, MS, BP McGrail, and VA Glezakou, (2014), "Microstructural Response of Variably Hydrated Ca-rich Montmorillonite to Supercritical CO₂", <u>ES&T</u>, Vol 48, 8612-8619.
- Loring, JS, et al., (2014). In situ study of CO₂ and H₂O partitioning between Namontmorillonite and variably wet supercritical carbon dioxide. <u>Langmuir</u>, 30 (21), pp 6120–6128.
- Schaef, HT, V-A Glezakou, et al, (2014). "Surface Condensation of CO₂ onto Kaolinite", <u>ES&T Letters</u>,1(2): 142-145.
- Thompson, CJ, PF Martin, J Chen, P Benezeth, HT Schaef, KM Rosso, AR Felmy, and JS Loring, (**2014)**. "Automated high-pressure titration system with in situ infrared spectroscopic detection", <u>Review of Scientific Instruments</u>, vol 85, issue 4, 044102.
- Glezakou, V-A., BP McGrail, HT Schaef (2012) "Molecular interactions of SO₂ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", <u>GCA</u>, Vol 92, 265-274.

- Windisch Jr, CF, HT Schaef, PF Martin, AT Owen, and BP McGrail, (2012). "Following ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", *Spectrochimica Acta Part* A 94 186-191.
- Windisch, C. F., V. A. Glezakou, et al. (2012). "Raman spectrum of supercritical (CO₂)-O-18 and re-evaluation of the Fermi resonance." <u>Physical Chemistry Chemical Physics</u> 14(8): 2560-2566.
- Tian, Jian, Praveen K. Thallapally and B Peter McGrail, (**2012**). "Porous organic molecular materials", *CrystEngComm*, (2012), 14 (6) 1909-1919.
- Liu, Jian, Praveen K. Thallapally, B. Peter McGrail, Daryl R. Brown and Jun Liu, (2012). "Progress in adsorption-based CO₂ capture by metal–organic frameworks", *Chem. Soc. Rev.*, 41, 2308-2322.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail, (2010). "Structure, Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys Chem Chem Phys* 12(31):8759-71.
- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz. (2010). "Prussian Blue Analogues for CO₂ and So₂ Capture and Separation Applications." *Inorg. Chem.* 49(11):4909-4915.
- Windisch CF, Jr, PK Thallapally, and BP McGrail. (2010). "Competitive Adsorption Study of CO₂ and SO₂ on Co^{II}₃[Co^{III}(CN)₆]₂ Using DRIFTS."Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 77(1):287–291.

- Tian J, R. K. Motkuri, and P. K. Thallapally. (2010). "Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block." *Crystal Growth & Design* 10(9):3843-3846.
- Nune SK, PK Thallapally, and BP McGrail. (2010). "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* 20(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, (**2010**). "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, RK, Thallapally, PK, McGrail, BP, Ghorishi, SB, Dehydrated Prussian blues for CO₂ storage and separation applications. *Crystengcomm* (**2010**), 12 (12), 4003-4006.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. (2009). "Spontaneous Activation of CO₂ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *Journal of Physical Chemistry C* 113.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. (2009). "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696.

Sequestration in Basalt Formations

Project Number 66799 Task 2

B. Peter McGrail H. Todd Schaef Pacific Northwest National Laboratory

Collaborating Institutions

University of Wyoming

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface through Technology Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂ and most common contaminants
- Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of CO₂ in unconventional geologic formations (basalts and shales) for long term subsurface storage and enhanced gas recovery. Findings from this project will advance industry's ability to predict CO₂ storage capacity in geologic formations.

Basalt Project Overview: Goals and Objectives

- Goal: Provide a path forward for commercial use of deep basalt formations for CO₂ sequestration
- Objective: Address key challenges associated with utilization of basalt formations as CO₂ storage units
 - Conduct laboratory research that addresses commercialscale injection strategies
 - Provide laboratory measurements for predicting CO₂ fate and transport
 - Support field activities associated with Wallula basalt pilot project

Basalt Project Overview: Scope of work

- Carbonate Mineralization in Wet scCO₂ Fluids
 - Mineral reactivity and transformations in adsorbed H₂O films
 - Kinetics of forsterite carbonation in thin water films
 - MD Simulations
 - Visualizing mineral carbonation in wet scCO₂
 - Crystal growth
 - Mechanism of carbonation
- Wallula Basalt Pilot Study
 - Overview and update of pilot project
 - Final wireline and hydrologic characterization
 - Isotopic analysis on pre and post injection samples
 - nanoSIMS technique
 - Isotopic comparison of pre and post CO₂ injection

post-injection sidewall core recovered from 856.5 m.

Phase Behavior of CO₂-H₂O Mixtures in Geological Sequestration

CO₂-H₂O Mixtures

- CO₂ solubility in water varies little with pressure and temperature
- H₂O solubility in scCO₂ is strongly dependent on depth
- An equivalent geochemical framework for chemical reactivity in wet scCO₂ does not yet exist

Mineral transformation kinetics is potentially as great or greater in wet scCO₂

Probing dynamic mineral reactivity and transformations in adsorbed H_2O films

Goal: Probing dynamic geochemistry occurring in adsorbed H_2O films.

Experimental Conditions: Constant temperature (50°C) and pressure (90 bar), with dry to variably wet $scCO_2$.

Results: Siderite precipitates, but only beyond a threshold adsorbed H_2O concentration of 5.6 monolayers.

Goal: Role of adsorbed H_2O threshold concentration in carbonation reactivity.

Experimental Conditions: 50°C and 90 bar scCO₂, with 35% H₂O saturation, initially all dissolved water is enriched in ¹⁸O.

Results: Fast conversion of $H_2^{18}O$ to $H_2^{16}O$ with only ~2.5 monolayers adsorbed H_2O indicates carbonic acid formation

Kinetics of forsterite carbonation in thin water films quantified with in-situ HXRD

- Energy barrier for mineral transformation changes with water content
 - Apparent activation energy of coupled forsterite dissolution and Mg-carbonate precipitation doubles when water in the scCO₂ is 85%
 - Implications for mineralization in confined subsurface environments (pores, pore throats, and fractures)

Visualizing Mineral Carbonation in Wet scCO₂

Experimental Approach: Brucite, when exposed to a steady stream of humid $scCO_2$ at 50°C and 90 bar, forms rod-shaped nesquehonite clearly visible on the brucite surface.

Pressurized Atomic Forced Microscopy

- \succ Carbonation in wet scCO₂
 - Controlling factors
 - Modeling parameters
- Carbonation Products
 - Nucleation sites
 - •Growth habits and morphologies
- Intrinsic Rate Constants
 - •Water concentrations in scCO₂
 - Variability in water film thickness

Mineral Carbonation: In-situ AFM images collected from a polished brucite surface during exposure to dry $scCO_2$ after (minutes): (a) 60, then after exposure to wet $scCO_2$ (water saturated) (b) 65, (c) 276, (d) 355, (e) 362, (f) 366, (g) 370, (h) 375, (i) 379, (J) 384, (k) 388, and (l) 392. Experimental conditions: 90 bar, 50°C, and a flow rate of 250 µL/min.

Visualizing Mineral Carbonation in Wet scCO₂

Crystal growth rate of the nesquehonite crystals

- Tracking nesquehonite growth rate in time lapsed images
- Rod-shaped crystal growth becomes attenuated with an increase in size whereas small rods experience accelerated growth during the initial formation period.

The crystal growth of rod-shaped crystals in length (A), width (B), and height (C) direction.

The brucite surface becomes almost completely covered by rod-shaped crystals after 7 h 15min and then was completely encased in rod-shaped crystals after 20 h 44 min.

Basalt Project Overview: Scope of work

- Wallula Basalt Pilot Project Support
 - Field Activities
 - Detailed wireline survey characterization
 - Groundwater sampling
 - Targeted side-wall coring
 - Extended hydrologic tests
 - Final well decommissioning/site demobilization.
 - Laboratory Activities
 - Side wall core characterization.

Flood Basalt Features Relevant to CO₂ Sequestration

- Formation process
 - Giant volcanic eruptions
 - Low viscosity lava
 - Large plateaus
 - Multiple layers

Primary structures

- Thick impermeable seals
 - Caprock (flow interior)
 - Regional extensive interbeds
- Permeable vesicular and brecciated interflow zones
 - Injection targets
 - 15-20% of average flow

Deccan Trap Basalts

34

Wallula Basalt Carbon Sequestration Pilot Project

Project Background:

- Drilling initial test characterization and well completion: Jan. – May 2009
- Extended hydraulic test characterization: Feb. – March 2011 and Sept. – Nov. 2012
- ~1,000 MT CO₂ injection: July 17th August 11th, 2013
- Post-injection air/soil monitoring and downhole fluid sampling performed for ~2 years following injection

Current Status:

- Final well characterization activities: June July 2015
- Detailed wireline survey
- Targeted sidewall coring
- Extended hydrologic tests
- Final well decommissioning/site demobilization: August 2015

Wallula Basalt Pilot Well: Final Wireline and Hydrologic Characterization

Extended duration hydrologic injection test

- Assess large scale changes in aquifer reservoir hydraulics
- 18,000 gallons of water was injected over 3.7 days (avg. rate of ~3.4 gpm).
- Post injection recovery was monitored over a 5 day period
- 7 low-stress (i.e. ΔP ≈ 13 psi), near-field pressurized slug tests (i.e. pulse tests)
 - Near-field reservoir hydraulic properties immediately surrounding the open borehole
- Short-duration constant rate drawdown and recovery test
 - Near-field reservoir hydraulic properties extending a few 10's of feet from the borehole

Detailed wireline survey for detecting CO₂ and geochemical and physical property changes (porosity) in injection zone basalt flow tops:

Injection zone still exhibits a well-defined temperature signature (+4 °F) 22-months after injection termination.

Wallula Basalt Pilot Well: Post Injection Downhole Fluid Sampling

- Significant increases (factor of 10 to 100 higher) in post-injection fluid sample concentrations (e.g., TDS, alkalinity, Na, Ca, Mg, K)
- Concentrations continued to increase during post injection period (although at a declining rate)

Wallula Basalt Pilot Well: Initial Sidewall Core Characterization

- 50 sidewall cores were collected across the open borehole section between 2,716 – 2,900 ft bgs
- Carbonate reaction products observed on SWC samples occur both as large (up to ~1mm) nodules within open vesicles and as a coating on the borehole wall face of a few core samples
- XRD analysis of selected carbonate nodules identified ankerite as the only carbonate mineral present

2,810 ft Core Sample (Post-injection)

Wallula Basalt Pilot Well: Initial Sidewall Core Characterization

XMT imaging of post-injection sidewall core sample collected from 2,810 ft bgs

- XMT imaging shows likely ankerite nodules existing throughout core
- Chemically, these ankerite nodules are initially dominated by Ca, but become Fe rich as the precipitation progresses.

SEM micrograph of polished cross section of ankerite nodule (EDX analysis ID #)

Wallula Basalt Pilot Well: NanoSIMS Technique for Obtaining Delta δ^{13} C and δ^{18} O Ratios in Carbonates

Primary ions

Isotopic Characterization of Nodules

- Nano Secondary Ion Mass Spectrometry (NanoSIMS) was utilized to measure delta oxygen-18 (δ¹⁸O) and delta carbon-13 (δ¹³C) isotope ratios
- ~10 mg of ankerite nodules removed from SWC 857.1m
- Subsamples from natural calcite vein recovered in pre-CO₂ injection sidewall core
- Individual nodules mounted in epoxy and polished to obtain cross sections

Wallula Basalt Pilot Well: Isotopic Analysis on pre and post injection samples

Isotopic Data

- Ankerite nodules were depleted in δ¹³C relative to natural occurring calcite
- Formation water, evolved CO₂, & CO₂ source, were depleted in δ¹³C (analyzed by outside laboratory)
- Natural calcite from wellbore and carbonates in drill cuttings (pre injection) enriched in δ¹³C

- Pre injection carbonate containing samples are enriched in δ¹³C compared to post injected carbonates
- Metal cations such as Fe and Mn appearing in the ankerite nodules indicate a reaction between the basalt and CO₂
- Clear evidence of the injected CO₂ mineralizing into ankerite.

Summary

Key Findings

- Carbonation process in adsorbed water films is complicated and is dependent on water film thickness.
- Precipitation of meta stable phases mark the initial steps of carbonation in wet scCO₂ fluids.
- Temperature logging shown to be a simple and cheap monitoring method for spatially tracking CO₂ injection
- Carbonates from post injection sidewall cores contain distinct isotopic signatures traceable to the injected CO₂.

"CO₂ storage in basalt formations is also a potentially important option for regions like the Indian subcontinent " IEG Technology Roadmap, 2009.

Cross sectioned nodules from core 2810 ft embedded in epoxy and polished for nanoSIMS analysis and then later for SEM-EDX.

FY 16 Planned Activity

- Continue investigating importance of importance of water bearing scCO₂ on carbonation reactions with relevant silicate minerals
- Summarize and publish results obtained from the Wallula Basalt Pilot Project

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

	1	Detailed Schedule FY 2015-FY 2016													
				July	Aug	Sept	Oct	Nov				March	April	May	June
	Task Name														
#	Project Management	Start	Finish												
1	Manage Project	Jul-15	Jun-16		1		1		1		-	1			1
2	FY15 Q4 Report	Jul-15	Sep-15				-					-			
3	FY16 Q1 Report	Oct-15	Dec-15							4					
4	FY16 Q2 Report	Jan-16	Mar-16				-						-		-
5	FY16 Q3 Report	Mar-16	Jun-16										[
					ļ										ļ
	Miles	stone Description	Milestone Date												
6	Develop a high-pressure, in situ spectroscopic capability for quantifying sorption of methane onto organic-rich shales. Experiments will be conducted to measure methane retention on natural shales at representative reservoir conditions. This work will include a series of experiments where pure kerogen is exposed to scCO2 at relevant reservoir conditions to obtain partition coefficients.		Sep-15			-•									
7	Conduct a series of pressurized FTIR titrations coupled to in situ XRD experiments using cation saturated montmonillonites and natural shale gas core samples to establish mineral structural changes and gas soption behaviors occurring in CH4/CO2 mixtures as a function of dissolved water content. Experimental results will be used in computational goochemistry studies to obtain mechanistic processes dominating CH4/CO2 exchange under realistic reservoir conditions. The final outcomes will be contributions to the development of optimum injection strategies and idealized in situ conditions for maximizing CH4/CO2 exchange rates in develoted shale das reservoirs.		Sep-15			-									
8	Complete isotopic measurement sidewall cores collected from those carbonates known to or	ents on carbonate material removed from the Basalt Pilot Well and compare results to ccur naturally within the basalt flows. The reported in the quarterly report.	Dec-15						•						
9	Conduct a series of pressurized Atomic Forced Microscopy (AFM) experiments that capture carbonation of a pure mineral phase in the presence of scCO2 and water. These measurements have the potential of providing diagnostic information on carbonate nucleation, meta-stable intermediate transitional phases, and crystal growth rates in occurring in a wet scCO2 fluid.		Dec-15						-•	•					
10	Complete acoustic velocity measurements for CO2 based nanofluids systems using pressurized low-frequency dynamic geomechanical techniques. Results of these experiments will help define materials suitable		Mar-16									•			
11	for additional testing. Summarize findings associated with the Wallula Basalt Pilot well into a manuscript for submission to a high impact peer reviewed journal. These finds will include comparisons between down hole logging surveys measuring pore fluid saturation, thermal impacts of the injected CO2 on formation temperature, and comparison 13C and 18O values between the injected fluid, groundwater samples, well cuttings, and those carbonate nodules identified in side wall cores and natural occurring carbonates.		Mar-16									•			
12	Conduct a series of in situ FTIR and XRD experiments to characterize thin water film development and carbonation of important basalt mimeral silicates (i.e. pryxone, layalite, and microcline etc.). Data generated from these experiments will complement our data set on forsterite and plagioclase minerals. We will utilize computation geochemistry to identify key reaction mechanisms that 1) drive water film development and 2) control carbonation. Outcomes from this study will be incorporated into reservoir models to obtain better prediction of CO2 storage in basalt formations.		Jun-16												
13	Conduct pre-closure geochem wireline geophysical logs and characterization/analysis of th compilation of groundwater ch in quarterly reports.	Jun-16													
Sec	ject: Capture and questration Support vices	Task Quartiy Report			Miles	tone			Ph	nase =					

- Qafoku, O, DA Dixon, KM Rosso, HT Schaef, et al., 2015. "Dynamics of Magnesite Formation at Low-Temperature and High-pCO₂ in Aqueous Solution", <u>ES&T</u>, Vol 49, Issue 17, 10736-10744.
- Lee, MS, BP McGrail, R Rousseau, and VA Glezakou, (2015). "Structure, dynamics, and stability of water/scCO₂/anorthite interfaces from first principles molecular dynamics simulations", <u>Nature Scientific Reports</u>, 2015; 5: 14857.
- Loring, JS, J Chen, P Benezeth, et al., (2015), "Evidence for carbonate surface complexation during forsterite carbonation in wet scCO₂", <u>Langmuir</u>, Vol 31, Issue 27, pages 753-43.
- Miller, Q.R.S., Kaszuba, et al., (**2015)**. "Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO₂ Fluids", <u>ES&T</u>, Vol 49, issue 7, 4724-4734.
- Schaef, H. T.,J. A. Horner et al., (2014), Mineralization of Basalts in the CO₂-H₂O-SO₂-O₂ System, <u>ES&T</u>, vol 48, issue 9, 5298-5305.
- Thompson, C. J.; Martin, P. F.; Chen, J.; Schaef, H. T.; Rosso, K. M.; Felmy, A. R.; Loring, J. S. (2014) "Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection", <u>Reviews of Scientific Instruments</u>, vol 85, issue 4, 044102.
- Schaef, H. T., B. P. McGrail, et al. (2013). "Mineralization of basalts in the CO₂-H₂O-H₂S system ." <u>IJGGC</u>, vol 16, 187-196.
- Schaef, H.T., Q.R.S. Miller, C.J. Thompson, et al., (2013) "Silicate Carbonation in scCO₂ Containing Dissolved H₂O: An in situ High Pressure X-Ray Diffraction and Infrared Spectroscopy Study", <u>Energy Procedia</u>, vol 37, 5892-5896.

Bibliography (cont.)

- Bacon, KH, R. Ramanathan, HT Schaef, and BP McGrail, (2014), Simulating geologic co-۲ sequestration of carbon dioxide and hydrogen sulfide in a basalt formation, IJGGC, vol 21, 165-176.
- Miller, Q., Thompson, C., et al. (2013). "Insights into silicate carbonation in water bearing ٠ supercritical CO₂", <u>IJGGC</u>, Vol 15, 104-118.
- Schaef, H. T., B. P. McGrail, et al. (2012). "Forsterite [Mg₂SiO₄)] Carbonation in Wet ٠ Supercritical CO₂: An in situ High Pressure X-Ray Diffraction Study." Environmental Science & Technology, vol 47, 174-181.
- Schaef, H. T., B. P. McGrail, et al. (2011). Basalt reactivity variability with reservoir depth in supercritical CO₂ and aqueous phases. <u>GHGT10</u>. Amsterdam, Netherlands, Energy Procedia: 4977-4984.
- Schaef, H. T., B. P. McGrail, et al. (2010). "Carbonate mineralization of volcanic province ۲ basalts." International Journal of Greenhouse Gas Control 4(2): 249-261.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water ٠ Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of GHGT-9, Energy Procedia.(9):3691-3696
- Schaef, H. T. and B. P. McGrail (2009). "Dissolution of Columbia River Basalt under ۲ mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide." Applied Geochemistry 24(5): 980-987.
- McGrail, B. P., H. T. Schaef, et al. (2006). "Potential for carbon dioxide sequestration in • flood basalts." Journal of Geophysical Research-Solid Earth 111(B12201): ARTN B12201.